Skip to Site Navigation Skip to Main Content Skip to Footer

Data Analytics - MSc

Why study this course?

On our Data Analytics MSc you'll be introduced to subjects including data mining, statistical modelling, business intelligence and data visualisation. The course has been developed with direct input from industry experts who’ll present you with real-life business cases as part of your work-related learning. By the end of the MSc degree, you’ll be ready to apply for rewarding roles in the data science and big data industries, as well as the many sectors and organisations that increasingly require data analysts.

Open all

This postgraduate course will equip you with the theoretical, technical and practical skills required to become a data analyst. With an expert teaching team, access to specialist software and work on real-life business cases, you’ll be well prepared for a career in data analytics upon graduation.

The modules on this course have been developed with the help of industry professionals, some of whom will be present to teach you in specific classes. These experts will help you explore advanced techniques in data science. You'll study specialist subjects including financial mathematics, statistical modelling and forecasting, as well as having the chance to develop your own unique piece of work in the MSc Project module.

You’ll also be trained to use specialist software tools and environments currently used by professionals in industry. For example, you’ll have access to R and Python programming, IBM SPSS, SAS®, Tableau, Oracle and Hadoop. Familiarity with these tools will greatly enhance your employability upon graduation.

Our skilled professionals will expose you to real-life business case scenarios. For example, past students have worked on data warehouse projects with Lloyds Bank. This ensures you’ll develop practical skills and become familiar with the kind of challenges you could face in data analyst roles.

Assessment

The course is assessed in a number of ways including written reports, practical and research assignments, demonstrations, presentations, group work and examinations.

You will be required to have:

  • a 2:2 UK degree (or equivalent) in any discipline that involves an element of data analysis (applicants with relevant professional experience will also be considered)

All applicants must be able to demonstrate proficiency in the English language. Applicants who require a Tier 4 student visa may need to provide a Secure English Language Test (SELT) such as Academic IELTS. For more information about English qualifications please see our English language requirements.

The modules listed below are for the academic year 2017/18 and represent the course modules at this time. Modules and module details (including, but not limited to, location and time) are subject to change over time.

Year 1 modules include:

  • This module currently runs:
    • autumn semester - Thursday afternoon

    This module explores fundamental concepts for analysing and visualising data. The module covers descriptive statistics for exploratory data analysis, correlation analysis and linear regression model. Graph and text data analysing techniques for web and big data and reporting the results and presenting the data with visualisation techniques are also discussed. A substantial practical element is integrated into the module to enable students to apply data analysis and visualisation techniques for real world data analytical problems.

    Read full details.
  • This module currently runs:
    • spring semester - Thursday morning

    This module provides an appreciation of data mining concepts, techniques, andprocess for business Intelligence. It covers data mining techniques for both supervised learning (decision tree, logistic regression and neural network models) and unsupervised learning (cluster and association analyses).
    It is designed to help equip the students with practical skills in applying data mining techniques in a modern business environment.

    Read full details.
  • This module currently runs:
    • autumn semester - Thursday morning

    The module provides an introduction to relational data modelling and multidimensional data modelling techniques for data analytics. It enables students to acquire skills in advanced SQL and OLAP operations (OLAP cube, rollup, drill-down, slice and dice and pivot). The module is designed to help students with practical skills in preparing data for analysis which usually takes 50%-70% of data analytical project time. Big Data analytics platforms will also be introduced.

    Read full details.
  • This module currently runs:
    • all year (September start) - Wednesday afternoon
    • summer studies - Wednesday afternoon
    • spring semester - Wednesday afternoon
    • autumn semester - Wednesday afternoon

    The module provides students with the experience of planning and bringing to fruition a major piece of individual work. Also, the module aims to encourage and reward individual inventiveness and application of effort through working on research or company/local government projects. The project is an exercise that may take a variety of forms depending on the nature of the project and the subject area. Particular students will be encouraged to carry out their projects for local companies or government departments.

    Read full details.
  • This module currently runs:
    • spring semester - Thursday afternoon

    This module develops students’ foundation of programming principles through the introduction of application programming for data analytics. The module covers common programming data structures, flow controls, data input and output, and error handling. In particular, the module places emphasis on data manipulation and presentation for data analysis. A substantial practical element is integrated into the module to enable students to use a programming language (e.g. Python) to prepare data for analysis and develop data analytical applications.

    Read full details.
  • This module currently runs:
    • spring semester afternoon

    This module will introduce students to modern statistical modelling techniques and how those techniques can be used for prediction and forecasting. Throughout the statistical environment and software R will be used in conjunction with relevant statistical libraries.
    The module will, introduce modern regression techniques (including smoothing), discuss different model selection techniques (including the classical statistical hypothesis) and how those techniques can be used for prediction purpose.

    Read full details.
  • This module currently runs:
    • autumn semester afternoon

    This module provides an introduction to some of the key mathematical methods used in financial calculations and how they are applied to the valuation of projects in the presence of uncertainty. There will be a particular focus on Discounted Cash Flow and Real Options methods but also on recent developments in the field of project valuation.

    Methods such as Monte-Carlo simulation for financial options valuation and the Capital Asset Pricing Model (CAPM) with the aim of optimising a portfolio will also be explored using real financial data.

    Read full details.
  • This module currently runs:
    • spring semester afternoon
    • autumn semester - Wednesday afternoon

    The module enables students to undertake an appropriate short period of professional activity, related to their course at level 7, with a business or community organisation and to gain credit for their achievements. The activity can be a volunteering activity, employment activity, an activity within the Faculty of Computing Virtual Business Environment (VBE), placement or business start-up activity. For the purpose of this module – the FOC VBE will be also be recognised as ‘an employer’.

    It is expected student should work for 200 hours which should be recorded clearly (in a learning log for instance) in the portfolio. The 200 hours can be completed in a FT mode, or spread over a semester in a PT mode.

    Students should register with the module leader to be briefed on the module, undergo induction and work related learning planning and to have the work related learning agreement approved, before they take up the opportunity. It is essential that students are made aware that both the “work related learning agreement” and relevant “health and safety checklist” where applicable need to be approved before starting the placement.

    Read full details.

Indicative core modules:

  • Data Analysis and Visualisation
  • Data Mining for Business Intelligence
  • Data Modelling and OLAP Techniques for Data Analytics
  • Statistical Modelling and Forecasting
  • Programming for Data Analytics
  • MSc Project

Indicative optional modules, choose one from:

  • Financial Mathematics
  • Work-Related Learning

Upon completion of the course, you’ll be well equipped to work in some of the fastest growing sectors of the data science and big data industries. A wide range of career opportunities will be open to you in the commercial, public and financial sectors, especially in areas requiring big data analysis such as consumer, healthcare, scientific, financial, security intelligence, business and social sciences.

Job roles you could apply for include data scientist, data analyst, digital analyst, big data consultant, statistical analyst and data modeller. You’ll be eligible to work in a multitude of areas where skills such as R or Python programming, machine learning and statistical modelling, SAS® and SPSS experience, data visualisation and data-driven decision-making are required.

The course also provides you with an excellent basis for further study if you want to pursue a higher-level research degree or embark on an industry-based research career.

Between 2016 and 2020 we're investing £125 million in the London Metropolitan University campus, moving all of our activity to our current Holloway campus in Islington, north London. This will mean the teaching location of some courses will change over time.

Whether you will be affected will depend on the duration of your course, when you start and your mode of study. The earliest moves affecting new students will be in September 2017. This may mean you begin your course at one location, but over the duration of the course you are relocated to one of our other campuses. Our intention is that no full-time student will change campus more than once during a course of typical duration.

All students will benefit from our move to one campus, which will allow us to develop state-of-the-art facilities, flexible teaching areas and stunning social spaces.

Please note, in addition to the tuition fee there may be additional costs for things like equipment, materials, printing, textbooks, trips or professional body fees.

Additionally, there may be other activities that are not formally part of your course and not required to complete your course, but which you may find helpful (for example, optional field trips). The costs of these are additional to your tuition fee and the fees set out above and will be notified when the activity is being arranged.

How to apply

Use the apply online button to begin your application.

When to apply

You are advised to apply as early as possible as applications will only be considered if there are places available on the course.

Fees and key information

Postgraduate

News and success stories

Meet the team


Visit us